Publication of IJETD
Ensemble Machine Learning Models for Predicting Credit Card Transaction Frauds in Banking Sector
Authors : Sunil Jacob Enokkaren, Jaya Vardhani Mamidala, Varun Bitkuri, Avinash Attipalli, Raghuvaran Kendyala, Jagan Kurma
Open Access | Volume 2 Issue 1 | Jan–Mar 2025
https://doi.org/10.63665/ijetd-y2f1a001
How to Cite :
Enokkaren, S. J., Mamidala, J. V., Bitkuri, V., Attipalli, A., Kendyala, R., & Kurma, J. (2025). "Ensemble Machine Learning Models for Predicting Credit Card Transaction Frauds in Banking Sector", International Journal of Engineering & Tech Development [IJETD], Volume 2, Issue 1 (Jan–Mar 2025), pp. 1–11.
Abstract
Banks are known to incur substantial financial loss every year because of financial fraud in the banks. This can be mitigated through early detection, the development of a counter-strategy, and the recuperation of losses caused by such fraud. This paper presents a proposed ensemble architecture that integrates Long Short-Term Memory (LSTM) and Artificial Neural Network (ANN) to overcome the limitations of class imbalance and multi-layered patterns in transactional data during Credit Card Fraud Detection (CCFD). With the Kaggle CCFD dataset, some preprocessing methods were performed, such as balancing data using the Synthetic Minority Oversampling Technique (SMOTE) and the top features selected using the Random Forest importance, as well as normalizing the values using Min-Max scaling. The proposed ensemble model reached a true rate of 98.67, a true accuracy of 98.51, a recall of 99.89 and an F1-score of 98.34 - far outperforming the traditional classifiers of Decision Trees (DT), Logistic Regression (LR), Naive Bayes (NBs), and K- K-Nearest Neighbors (KNN). These results demonstrate the ability of the ensemble model to be effective at modeling complex non-linear relationships, minimizing misclassification, and making predictable forecasts in extremely imbalanced data sets. The results highlight that ensemble machine learning (ML) methods have the capacity to augment current fraud detection systems and provide a foundation for future research to create stronger, larger, and safer financial fraud detection systems.
Keywords
Financial Risk Management, Anomaly Detection, Fraudulent Transactions, Ensemble Machine Learning, Data Mining Techniques, Classification Algorithms, Predictive Analytics, Banking Sector Security, Credit Card Fraud Detection.
Conclusion
There has been an increase in attacks by fraudsters on credit card transactions compared to the past. The further development of data science and machine learning has enabled the creation of numerous algorithms to identify fraudulent transactions. In this paper, an ensemble-based method for CCFD is described, which showed impressive results in identifying fraudulent transactions with a 98.67% success rate. The model effectively struck a balance between accuracy and recognition and thus minimized FP and FN, which is paramount to real-life uses where a false miss or false alarm might lead to a loss of money or customer dissatisfaction. Compared to traditional models like DT, LR, KNN, and NBs, the Ensemble demonstrated superior performance by capturing complex, non-linear fraud patterns, thereby proving its robustness and suitability for real-world detection. However, the research is limited by its reliance on a single dataset and synthetic oversampling with SMOTE, which may not fully reflect real-world scenarios. Future work will focus on testing with larger, more diverse datasets, exploring hybrid models such as CNN-LSTM for improved feature learning, and applying federated learning to enhance scalability, privacy, and adaptability.
References
[1] Z. M. Sanusi, M. N. F. Rameli, and Y. M. Isa, “Fraud Schemes in the Banking Institutions: Prevention Measures to Avoid Severe Financial Loss,” Procedia Econ. Financ., 2015, doi: 10.1016/s2212-5671(15)01088-6.
[2] Y.-J. Chen, W.-C., Liou, Y.-M. Chen, and J.-H. Wu, “Fraud detection for financial statements of business groups,” Int. J. Account. Inf. Syst., vol. 32, pp. 1–23, Mar. 2019, doi: 10.1016/j.accinf.2018.11.004.
[3] F. Carcillo, Y. A. Le Borgne, O. Caelen, and G. Bontempi, “Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization,” Int. J. Data Sci. Anal., 2018, doi: 10.1007/s41060-018-0116-z.
[4] A. Correa Bahnsen, D. Aouada, A. Stojanovic, and B. Ottersten, “Feature engineering strategies for credit card fraud detection,” Expert Syst. Appl., vol. 51, pp. 134–142, Jun. 2016, doi: 10.1016/j.eswa.2015.12.030.
[5] M. S. P, A. Saini, S. Ahmed, and S. D. Sarkar, “Credit Card Fraud Detection using Machine Learning and Data Science,” Int. J. Eng. Res., vol. 08, no. 09, Sep. 2019, doi: 10.17577/IJERTV8IS090031.
[6] S. V. Suryanarayana, B. Gn, and G. V. Rao, “Machine Learning Approaches for Credit Card Fraud Detection,” Int. J. Eng. Technol., vol. 7, no. 2, p. 917, Jun. 2018, doi: 10.14419/ijet.v7i2.9356.
[7] S. Carta, G. Fenu, D. R. Recupero, and R. Saia, “Fraud detection for E-commerce transactions by employing a prudential Multiple Consensus model,” J. Inf. Secur. Appl., vol. 46, pp. 13–22, Jun. 2019, doi: 10.1016/j.jisa.2019.02.007.
[8] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi, “Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 8, pp. 3784–3797, Aug. 2018, doi: 10.1109/TNNLS.2017.2736643.
[9] I. González-Carrasco, J. L. Jiménez-Márquez, J. L. López-Cuadrado, and B. Ruiz-Mezcua, “Automatic detection of relationships between banking operations using machine learning,” Inf. Sci. (Ny)., 2019, doi: 10.1016/j.ins.2019.02.030.
[10] S. Taneja, B. Suri, and C. Kothari, “Application of Balancing Techniques with Ensemble Approach for Credit Card Fraud Detection,” in 2019 International Conference on Computing, Power and Communication Technologies (GUCON), 2019, pp. 753–758.
[11] M. S. Kumar, V. Soundarya, S. Kavitha, E. S. Keerthika, and E. Aswini, “Credit Card Fraud Detection Using Random Forest Algorithm,” in 2019 3rd International Conference on Computing and Communications Technologies (ICCCT), IEEE, Feb. 2019, pp. 149–153. doi: 10.1109/ICCCT2.2019.8824930.
[12] A. Sethia, R. Patel, and P. Raut, “Data Augmentation using Generative models for Credit Card Fraud Detection,” in 2018 4th International Conference on Computing Communication and Automation (ICCCA), IEEE, Dec. 2018, pp. 1–6. doi: 10.1109/CCAA.2018.8777628.
[13] N. K. Gyamfi and J.-D. Abdulai, “Bank Fraud Detection Using Support Vector Machine,” in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), IEEE, Nov. 2018, pp. 37–41. doi: 10.1109/IEMCON.2018.8614994.
[14] M. Zamini and G. Montazer, “Credit Card Fraud Detection using autoencoder-based clustering,” in 9th International Symposium on Telecommunication: With Emphasis on Information and Communication Technology, IST 2018, 2018. doi: 10.1109/ISTEL.2018.8661129.
[15] N. Khare and S. Y. Sait, “Credit Card Fraud Detection Using Machine Learning Models and Collating Machine Learning Models,” Int. J. Pure Appl. Math., vol. 118, no. 20, pp. 825–838, 2018.
[16] J. O. Awoyemi, A. O. Adetunmbi, and S. A. Oluwadare, “Credit card fraud detection using machine learning techniques: A comparative analysis,” in Proceedings of the IEEE International Conference on Computing, Networking and Informatics, ICCNI 2017, 2017. doi: 10.1109/ICCNI.2017.8123782.
[17] K. Randhawa, C. K. Loo, M. Seera, C. P. Lim, and A. K. Nandi, “Credit Card Fraud Detection Using AdaBoost and Majority Voting,” IEEE Access, 2018, doi: 10.1109/ACCESS.2018.2806420.
[18] S. Shirgave, C. J. Awati, R. More, and R. More, “A review on credit card fraud detection using machine learning,” Int. J. Sci. Technol. Res., vol. 8, no. 10, pp. 1217–1220, 2019.
[19] Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., & Nandiraju, S. K. K. (2024). A Machine Learning-Based Framework for Predicting and Improving Student Outcomes Using Big Educational Data (Approved by ICITET 2024 Conference Proceedings). Available at SSRN 5315635.
[20] Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2025). Towards Early Forecast of Diabetes Mellitus via Machine Learning Systems in Healthcare. European Journal of Technology, 9(1), 35-50.
[21] Chalasani, R., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Tyagadurgam, M. S. V. (2025). Big Data-Driven Approach for Lung Cancer Identification via Advanced Deep Transfer Learning Models. European Journal of Technology, 9(1), 51-67.
[22] Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., Buddula, D. V. K. R., & Patchipulusu, H. H. S. (2024). Machine Learning-Based Approaches for Detecting and Mitigating Distributed Denial of Service (DDoS) Attacks to Improved Cloud Security. European Journal of Technology, 8(6), 28-48.
[23] Polu, A. R., Narra, B., Buddula, D. V. K. R., Hara, H., Patchipulusu, S., Vattikonda, N., & Gupta, A. K. Analyzing The Role of Analytics in Insurance Risk Management: A Systematic Review of Process Improvement and Business Agility.
[24] Madhura, R., Varshitha, P., Nikitha, S., Niveditha, K. M., & Bhat, M. (2024, December). RTL design of 16-bit RISC Processor Using Vedic Mathematics. In 2024 IEEE 33rd Asian Test Symposium (ATS) (pp. 1-4). IEEE.
[25] Harinandan, R., Kumar, M., Vamshi, P., Padma, C. R., Krishnappa, K. H., & Raghunandan, J. R. (2024, August). Design and Development of a Real-time Monitoring System for ACL Injury Prevention. In 2024 2nd International Conference on Networking, Embedded and Wireless Systems (ICNEWS) (pp. 1-6). IEEE.
[26] Krishnappa, K. H. (2024). Traffic pattern analysis for malicious node detection in NoC design. Journal of Communications, 9, 12.
[27] Mukund Sai Vikram Tyagadurgam, Venkataswamy Naidu Gangineni, Sriram Pabbineedi, Mitra Penmetsa, Jayakeshav Reddy Bhumireddy, et al. (2024) AI-Powered Cybersecurity Risk Scoring for Financial Institutions Using Machine Learning Techniques. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-482. DOI: doi.org/10.47363/JAICC/2024(3)452
[28] Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Vangala, S. R., Polam, R. M., & Kamarthapu, B. (2025). Adversarial Machine Learning in Cybersecurity: A Review on Defending Against AI-Driven Attacks. European Journal of Applied Science, Engineering and Technology, 3(4), 4-14.
[29] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2025). Using Artificial Intelligence-Based Machine Learning Regression Models for Predictions of Home Prices. European Journal of Applied Science, Engineering and Technology, 3(3), 404-416.
[30] Nandiraju, S. K. K., Chundru, S. K., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Kakani, A. B. (2025). Enhancing Cybersecurity: Zero-Day Attack Detection in Network Traffic with Deep Learning Model. Asian Journal of Research in Computer Science, 18(7), 262-273.
[31] Polam, R. M., Kamarthapu, B., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., & Vangala, S. R. (2025). Advanced Machine Learning for Robust Botnet Attack Detection in Evolving Threat Landscapes. Asian Journal of Research in Computer Science, 18(8), 1-14.
[32] Kamarthapu, B., Penmetsa, M., Reddy, J., Chalasani, R., Vangala, S. R., & Polam, R. M. Data-Driven Detection of Network Threats using Advanced Machine Learning Techniques for Cybersecurity.
[33] Chundru, S. K., Vikram, M. S., Naidu, V., Pabbineedi, S., Kakani, A. B., & Nandiraju, S. K. K. Analyzing and Predicting Anaemia with Advanced Machine Learning Techniques with Comparative Analysis.
[34] Gangineni, V. N., Tyagadurgam, M. S. V., Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2025). Preventing Phishing Attacks Using Advanced Deep Learning Techniques for Cyber Threat Mitigation. Journal of Data Analysis and Information Processing, 13(03), 10-4236.
[35] Kalla, D., Mohammed, A. S., Boddapati, V. N., Jiwani, N., & Kiruthiga, T. (2024, November). Investigating the Impact of Heuristic Algorithms on Cyberthreat Detection. In 2024 2nd International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT) (Vol. 1, pp. 450-455). IEEE.
[36] Gangineni, V. N., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., & Pabbineedi, S. (2025). Big Data and Predictive Analytics for Customer Retention: Exploring the Role of Machine Learning in E-Commerce. Available at SSRN 5478047.
[37] Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. (2025). The Role of the Internet of Things in Smart Cities: Current Implementations and Pathways for Future Development. Universal Library of Engineering Technology, 2(2).
[38] Narra, B., Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Polu, A. R. (2025). Applications of Blockchain in Software Engineering: Enhancing Security, Traceability, and Transparency. International Journal of Innovative Computer Science and IT Research, 1(02), 63-75.
[39] Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., Buddula, D. V. K. R., & Patchipulusu, H. H. S. (2025). Leveraging Deep Learning for Personalized Fashion Recommendations Using Fashion MNIST. International Journal of Emerging Trends in Computer Science and Information Technology, 6(2), 36-46.
[40] Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., Gupta, A. K., Polu, A. R., & Narra, B. (2025). Machine Learning-Based Detection and Prevention of Anti-Money Laundering (AML) in the Financial Sector. International Journal of Innovative Computer Science and IT Research, 1(02), 53-63.
[41] Polu, A. R., Narra, B., Vattikonda, N., Gupta, A. K., Buddula, D. V. K. R., & Patchipulusu, H. H. S. AI-POWERED SYNTHETIC COGNITION NETWORKS Leveraging Multi-Agent Machine Learning to Simulate and Optimize Human Decision-Making in Complex Crisis Scenarios. Global Pen Press UK.
[42] Mitra Penmetsa, Jayakeshav Reddy Bhumireddy, Rajiv Chalasani, Mukund Sai Vikram Tyagadurgam, Venkataswamy Naidu Gangineni, Sriram Pabbineedi. (2025) Big Data and Predictive Analytics for Customer Retention: Exploring the Role of Machine Learning in E-Commerce. International Journal of Computers, 10, 260-267
[43] Penmetsa, M., Bhumireddy, J.R., Chalasani, R., Vangala, S.R., Polam, R.M. and Kamarthapu, B. (2025) Effectiveness of Deep Learning Algorithms in Phishing Attack Detection for Cybersecurity Frameworks. Journal of Data Analysis and Information Processing, 13, 331-346. https://doi.org/10.4236/jdaip.2025.133021
[44] Prabakar, D., Iskandarova, N., Iskandarova, N., Kalla, D., Kulimova, K., & Parmar, D. (2025, May). Dynamic Resource Allocation in Cloud Computing Environments Using Hybrid Swarm Intelligence Algorithms. In 2025 International Conference on Networks and Cryptology (NETCRYPT) (pp. 882-886). IEEE.
[45] Nagaraju, S., Johri, P., Putta, P., Kalla, D., Polvanov, S., & Patel, N. V. (2025, May). Smart Routing in Urban Wireless Ad Hoc Networks Using Graph Attention Network-Based Decision Models. In 2025 International Conference on Networks and Cryptology (NETCRYPT) (pp. 212-216). IEEE.
[46] NR, A. R., Rajasri, T., Praveen, R., Kalla, D., Bendale, S. P., & Venu, N. (2025, April). CAC Training-A Unified Cybersecurity Training Program for Military Staff. In 2025 3rd International Conference on Communication, Security, and Artificial Intelligence (ICCSAI) (Vol. 3, pp. 569-573). IEEE.
[47] Kalla, D., Smith, N., & Samaah, F. (2025). Deep Learning-Based Sentiment Analysis: Enhancing IMDb Review Classification with LSTM Models. Available at SSRN 5103558.
[48] Sreeramulu, M. D., Mohammed, A. S., Kalla, D., Boddapati, N., & Natarajan, Y. (2024, September). AI-driven Dynamic Workload Balancing for Real-time Applications on Cloud Infrastructure. In 2024 7th International Conference on Contemporary Computing and Informatics (IC3I) (Vol. 7, pp. 1660-1665). IEEE.
[49] Kalla, D., & Samaah, F. (2023). Exploring Artificial Intelligence and Data-Driven Techniques for Anomaly Detection in Cloud Security. Available at SSRN 5045491.