International Journal of Machine Learning, AI & Data Science Evolution [IJMLAIDSE]
Deep Learning-Based Email Spam Identification and Classification for Enhanced Cybersecurity
Authors : Vaibhav Maniar, Aniruddha Arjun Singh Singh, Rami Reddy Kothamaram, Dinesh Rajendran, Venkata Deepak Namburi, Vetrivelan Tamilmani
Open Access | Volume 1 Issue 1 | 2024
https://doi.org/10.63665/ijmlaidse-y1f1a002
How to Cite :
Vaibhav Maniar, Aniruddha Arjun Singh Singh, Rami Reddy Kothamaram, Dinesh Rajendran, Venkata Deepak Namburi, Vetrivelan Tamilmani "Deep Learning-Based Email Spam Identification and Classification for Enhanced Cybersecurity", International Journal of Machine Learning, AI & Data Science Evolution [IJMLAIDSE], 2024, 1(1): pp. 12–25.
Abstract
Digital communication and cybersecurity are major problems concerning the spread of unsolicited and malicious emails. Spam emails are vectors of phishing, malware and financial fraud as well as inbox clutter. The conventional spam detection methods, like rule-based spam filters and the classical machine learning (ML) models, have limitations on their ability to detect spam based on pre-determined patterns, feature engineering, which requires a lot of human effort and inability to adapt to changes in threats. To address these, the given piece uses a deep learning-driven framework that would allow the extraction of complex and hierarchical patterns in email data automatically. Model training and evaluation are performed using the Spam Base benchmark dataset comprising 4601 emails having 57 features. High-quality input data can be guaranteed by doing comprehensive preprocessing such as parsing, tokenization, stemming, case folding, error correction, and extraction with the help of regressions. Feature extraction, dimensionality reduction, and data classification selection techniques are used to further optimize the dataset. Accuracy, Recall, Precision, and F1-score were evaluated using a 70:30 train-test split for an Artificial Neural Network (ANN), with results of 99.50, 99.68, 99.68, and 99.68, respectively. The findings prove the strength, scalability, and usefulness of the framework in spam detection, which helps to increase cybersecurity and efficient email communication systems. Further improvements on the detection of advanced spamming can be discussed in future work, and one of the methods is the multi-mode and transformer-based approach.
Keywords
Email Spam Detection, Deep Learning, Machine Learning Cybersecurity, Malicious Email Filtering, Email Classification, Support Vector Machines (SVM), Naive Bayes (NB). Long Short-Term Memory (LSTM).
Conclusion and Future Work
The deep learning-based model temperature in this paper illustrates a very efficient methodology to classify and detect email spam and eliminate the weaknesses of the conventional rule-based and ML methods. With the help of an ANN trained based on the Spam Base dataset, the model demonstrated very good results, with a 99.68% F1-score, 99.68% Recall, 99.68% Precision, and 99.50% Accuracy, demonstrating good performance in the field of spam and legitimate emails. The preprocessing, feature extraction, dimensionality reduction and feature selection steps made sure that the input data was of good quality so that the ANN could learn the complex patterns and dependencies that the traditional methods could have overlooked. The ANN was considered to have a better capability to reduce the false positives and negatives and at the same time balance performance across the evaluation measures when compared to the standard neural networks, MLP and LSTM models. The next step in development of model is consideration of multi-modal spam detection model which adds to the text-only model attachments, pictures, and embedded links to counter more complex threats. The addition of transformer-based architecture may also promote semantic interpretation and flexibility to the changing spam tactics. Also, the implementation of the system in the large-scale enterprise email infrastructures will test scalability, real-time performance, and robustness. Regular updates of datasets and the dynamic process of learning will assist in keeping the models relevant, which would guarantee further improvement of cybersecurity and stable email communication.
References
[1] V. Rajavel, G. Balaji, and A. V. Gomathinayagam, “Eye Gaze Pecularities Detection in Children with Autism using a Head-free cam,” Int. J. Eng. Sci. Res. Technol., vol. 5, no. 6, pp. 868–876, 2016.
[2] A. Zamir, H. U. Khan, W. Mehmood, T. Iqbal, and A. U. Akram, “A feature-centric spam email detection model using diverse supervised machine learning algorithms,” Electron. Libr., vol. 38, no. 3, pp. 633–657, 2020, doi: 10.1108/EL-07-2019-0181.
[3] Y. Alamlahi and A. Muthana, “An Email Modelling Approach for Neural Network Spam Filtering to Improve Score-based Anti-spam Systems,” Int. J. Comput. Netw. Inf. Secur., vol. 10, no. 12, pp. 1–10, Dec. 2018, doi: 10.5815/ijcnis.2018.12.01.
[4] D. D. Rao, “Multimedia Based Intelligent Content Networking for Future Internet,” in 2009 Third UKSim European Symposium on Computer Modeling and Simulation, 2009, pp. 55–59. doi: 10.1109/EMS.2009.108.
[5] E. E. Eryılmaz, D. Ö. Şahin, and E. Kılıç, “Filtering Turkish Spam Using LSTM From Deep Learning Techniques,” in 2020 8th International Symposium on Digital Forensics and Security (ISDFS), IEEE, Jun. 2020, pp. 1–6. doi: 10.1109/ISDFS49300.2020.9116440.
[6] S. S. S. Neeli, “Real-Time Data Management with In-Memory Databases: A Performance-Centric Approach,” J. Adv. Dev. Res., vol. 11, no. 2, p. 8, 2020.
[7] H. Bhuiyan, A. Ashiquzzaman, T. I. Juthi, S. Biswas, and J. Ara, “A survey of existing e-mail spam filtering methods considering machine learning techniques,” Glob. J. Comput. Sci. Technol., vol. 18, no. 2, pp. 20–29, 2018.
[8] S. Bosaeed, I. Katib, and R. Mehmood, “A Fog-Augmented Machine Learning based SMS Spam Detection and Classification System,” in 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC), IEEE, Apr. 2020, pp. 325–330. doi: 10.1109/FMEC49853.2020.9144833.
[9] Y. R. Bujang and H. Hussin, “Should we be concerned with spam emails? A look at its impacts and implications,” in 2013 5th International Conference on Information and Communication Technology for the Muslim World (ICT4M), 2013, pp. 1–6.
[10] A. Balasubramanian, “Proactive Machine Learning Approach to Combat Money Laundering in Financial Sectors,” Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 7, no. 2, pp. 1–15, 2019, doi: 10.5281/zenodo.14508474.
[11] D. Wang, D. Irani, and C. Pu, “A Study on Evolution of Email Spam Over Fifteen Years,” in Proceedings of the 9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, ICST, 2013, pp. 1–10. doi: 10.4108/icst.collaboratecom.2013.254082.
[12] A. Tyagi, “Content based spam classification-a deep learning approach,” Univ. Calgary Calgary, AB, Canada, 2016.
[13] A. Balasubramanian and N. Gurushankar, “AI-Driven Supply Chain Risk Management: Integrating Hardware and Software for Real-Time Prediction in Critical Industries,” Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 8, no. 3, 2020, doi: 10.5281/zenodo.14565873.
[14] S. S. S. Neeli, “Optimizing Database Management with DevOps: Strategies and Real-World Examples,” J. Adv. Dev. Res., vol. 11, no. 1, 2020.
[15] M. Alauthman, “Botnet Spam E-Mail Detection Using Deep Recurrent Neural Network,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 5, pp. 1979–1986, 2020, doi: 10.30534/ijeter/2020/83852020.
[16] S. E. Rahman and S. Ullah, “Email Spam Detection using Bidirectional Long Short Term Memory with Convolutional Neural Network,” in 2020 IEEE Region 10 Symposium (TENSYMP), 2020, pp. 1307–1311. doi: 10.1109/TENSYMP50017.2020.9230769.
[17] S. A. Khamis, C. F. M. Foozy, M. F. A. Aziz, and N. Rahim, “Header Based Email Spam Detection Framework Using Support Vector Machine (SVM) Technique,” in International conference on soft computing and data mining, 2020, pp. 57–65. doi: 10.1007/978-3-030-36056-6_6.
[18] M. O. Akinrele, “Detection of Phishing and Spam Emails Using Ensemble Technique,” Dublin, National College of Ireland, 2019.
[19] O. Göker, “Spam filtering using big data and deep learning,” 2018.
[20] V. Kumar, Monika, P. Kumar, and A. Sharma, “Spam Email Detection using ID3 Algorithm and Hidden Markov Model,” in 2018 Conference on Information and Communication Technology (CICT), 2018, pp. 1–6. doi: 10.1109/INFOCOMTECH.2018.8722378.
[21] Y. K. Zamil, S. A. Ali, and M. A. Naser, “Spam image email filtering using K-NN and SVM,” Int. J. Electr. Comput. Eng., vol. 9, no. 1, pp. 245–254, 2019, doi: 10.11591/ijece.v9i1.pp245-254.
[22] T. Wu et al., “Detecting spamming activities in twitter based on deep‐learning technique,” Concurr. Comput. Pract. Exp., vol. 29, no. 19, Oct. 2017, doi: 10.1002/cpe.4209.
[23] G. Jain, M. Sharma, and B. Agarwal, “Spam detection on social media text,” Int. J. Comput. Sci. Eng., vol. 5, 2017.
[24] S. Srinivasan et al., “Deep Convolutional Neural Network Based Image Spam Classification,” in 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), IEEE, Mar. 2020, pp. 112–117. doi: 10.1109/CDMA47397.2020.00025.
[25] H. M, N. A. Unnithan, V. R, and S. KP, “Deep learning based phishing e-mail detection,” in Proc. 1st AntiPhishing Shared Pilot 4th ACM Int. Workshop Secur. Privacy Anal.(IWSPA), 2018, pp. 1–5.
[26] D. Mallampati and N. Hegde, “A Machine Learning Based Email Spam Classification Framework Model: Related Challenges and Issues,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 4, pp. 3137–3144, 2020, doi: 10.35940/ijitee.d1561.029420.
[27] S. Madisetty and M. S. Desarkar, “A neural network-based ensemble approach for spam detection in Twitter,” IEEE Trans. Comput. Soc. Syst., vol. 5, no. 4, pp. 973–984, 2018.
[28] S. S. Roy, A. Sinha, R. Roy, C. Barna, and P. Samui, “Spam Email Detection Using Deep Support Vector Machine, Support Vector Machine and Artificial Neural Network,” in International Workshop Soft Computing Applications, 2018, pp. 162–174. doi: 10.1007/978-3-319-62524-9_13.
[29] S. M. Abdulhamid, M. Shuaib, and O. Osho, “Comparative analysis of classification algorithms for email spam detection,” 2018.
[30] G. Jain, M. Sharma, and B. Agarwal, “Spam detection in social media using convolutional and long short term memory neural network,” Ann. Math. Artif. Intell., vol. 85, no. 1, pp. 21–44, 2019.
[31] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Big Text Data Analysis for Sentiment Classification in Product Reviews Using Advanced Large Language Models. International Journal of AI, BigData, Computational and Management Studies, 2(2), 55-65.
[32] Gangineni, V. N., Tyagadurgam, M. S. V., Chalasani, R., Bhumireddy, J. R., & Penmetsa, M. (2021). Strengthening Cybersecurity Governance: The Impact of Firewalls on Risk Management. International Journal of AI, BigData, Computational and Management Studies, 2, 10-63282.
[33] Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., & Gangineni, V. N. (2021). An Advanced Machine Learning Models Design for Fraud Identification in Healthcare Insurance. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 26-34.
[34] Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., & Polam, R. M. (2021). Advanced Machine Learning Models for Detecting and Classifying Financial Fraud in Big Data-Driven. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 39-46.
[35] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2021). Enhancing IoT (Internet of Things) Security Through Intelligent Intrusion Detection Using ML Models. International Journal of Emerging Research in Engineering and Technology, 2(1), 27-36.
[36] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2021). Smart Healthcare: Machine Learning-Based Classification of Epileptic Seizure Disease Using EEG Signal Analysis. International Journal of Emerging Research in Engineering and Technology, 2(3), 61-70.
[37] Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., & Kamarthapu, B. (2021). Big Data and Predictive Analytics for Customer Retention: Exploring the Role of Machine Learning in E-Commerce. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 26-34.
[38] Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., & Pabbineedi, S. (2021). Next-Generation Cybersecurity: The Role of AI and Quantum Computing in Threat Detection. International Journal of Emerging Trends in Computer Science and Information Technology, 2(4), 54-61.
[39] Polu, A. R., Vattikonda, N., Gupta, A., Patchipulusu, H., Buddula, D. V. K. R., & Narra, B. (2021). Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques. Available at SSRN 5297803.
[40] Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.
[41] Polu, A. R., Vattikonda, N., Buddula, D. V. K. R., Narra, B., Patchipulusu, H., & Gupta, A. (2021). Integrating AI-Based Sentiment Analysis with Social Media Data for Enhanced Marketing Insights. Available at SSRN 5266555.
[42] Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Vattikonda, N., & Gupta, A. K. (2021). INTEGRATING AI-BASED SENTIMENT ANALYSIS WITH SOCIAL MEDIA DATA FOR ENHANCED MARKETING INSIGHTS. Journal Homepage: http://www. ijesm. co. in, 10(2).
[43] Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Narra, B., & Vattikonda, N. (2021). An Analysis of Crime Prediction and Classification Using Data Mining Techniques.
[44] Rajiv, C., Mukund Sai, V. T., Venkataswamy Naidu, G., Sriram, P., & Mitra, P. (2022). Leveraging Big Datasets for Machine Learning-Based Anomaly Detection in Cybersecurity Network Traffic. J Contemp Edu Theo Artific Intel: JCETAI/102.
[45] Sandeep Kumar, C., Srikanth Reddy, V., Ram Mohan, P., Bhavana, K., & Ajay Babu, K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. J Contemp Edu Theo Artific Intel: JCETAI/101.
[46] Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2020). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341
[47] Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340
[48] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2022). Designing an Intelligent Cybersecurity Intrusion Identify Framework Using Advanced Machine Learning Models in Cloud Computing. Universal Library of Engineering Technology, (Issue).
[49] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2022). Leveraging Artificial Intelligence Algorithms for Risk Prediction in Life Insurance Service Industry. Available at SSRN 5459694.
[50] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. International Journal of Emerging Trends in Computer Science and Information Technology, 2(3), 70-80.
[51] Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., & Tyagadurgam, M. S. V. Efficient Framework for Forecasting Auto Insurance Claims Utilizing Machine Learning Based Data-Driven Methodologies. International Research Journal of Economics and Management Studies IRJEMS, 1(2).
[52] Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., Buddula, D. V. K. R., & Patchipulusu, H. H. S. (2022). Blockchain Technology in Supply Chain and Logistics: A Comprehensive Review of Applications, Challenges, and Innovations. International Journal of Emerging Research in Engineering and Technology, 3(3), 99-107.
[53] Narra, B., Vattikonda, N., Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., & Polu, A. R. (2022). Revolutionizing Marketing Analytics: A Data-Driven Machine Learning Framework for Churn Prediction. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(2), 112-121.
[54] Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. BLOCKCHAIN TECHNOLOGY AS A TOOL FOR CYBERSECURITY: STRENGTHS, WEAKNESSES, AND POTENTIAL APPLICATIONS.
[55] Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2022). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341
[56] Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340
[57] Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Tyagadurgam, M. S. V., & Gangineni, V. N. (2023). Scalable Deep Learning Algorithms with Big Data for Predictive Maintenance in Industrial IoT. International Journal of AI, BigData, Computational and Management Studies, 4(1), 88-97.
[58] Chalasani, R., Vangala, S. R., Polam, R. M., Kamarthapu, B., Penmetsa, M., & Bhumireddy, J. R. (2023). Detecting Network Intrusions Using Big Data-Driven Artificial Intelligence Techniques in Cybersecurity. International Journal of AI, BigData, Computational and Management Studies, 4(3), 50-60.
[59] Vangala, S. R., Polam, R. M., Kamarthapu, B., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2023). A Review of Machine Learning Techniques for Financial Stress Testing: Emerging Trends, Tools, and Challenges. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 40-50.
[60] Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Tyagadurgam, M. S. V., Gangineni, V. N., & Pabbineedi, S. (2023). A Survey on Regulatory Compliance and AI-Based Risk Management in Financial Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 46-53.
[61] Bhumireddy, J. R., Chalasani, R., Vangala, S. R., Kamarthapu, B., Polam, R. M., & Penmetsa, M. (2023). Predictive Machine Learning Models for Financial Fraud Detection Leveraging Big Data Analysis. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 34-43.
[62] Gangineni, V. N., Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Tyagadurgam, M. S. V. (2023). AI-Enabled Big Data Analytics for Climate Change Prediction and Environmental Monitoring. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 71-79.
[63] Polam, R. M. (2023). Predictive Machine Learning Strategies and Clinical Diagnosis for Prognosis in Healthcare: Insights from MIMIC-III Dataset. Available at SSRN 5495028.
[64] Narra, B., Gupta, A., Polu, A. R., Vattikonda, N., Buddula, D. V. K. R., & Patchipulusu, H. (2023). Predictive Analytics in E-Commerce: Effective Business Analysis through Machine Learning. Available at SSRN 5315532.
[65] Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Vattikonda, N., & Gupta, A. K. (2023). Advanced Edge Computing Frameworks for Optimizing Data Processing and Latency in IoT Networks. JOETSR-Journal of Emerging Trends in Scientific Research, 1(1).
[66] Patchipulusu, H. H. S., Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., & Buddula, D. V. K. R. (2023). Opportunities and Limitations of Using Artificial Intelligence to Personalize E-Learning Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(1), 128-136.
[67] Madhura, R., Krishnappa, K. H., Shashidhar, R., Shwetha, G., Yashaswini, K. P., & Sandya, G. R. (2023, December). UVM Methodology for ARINC 429 Transceiver in Loop Back Mode. In 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC) (pp. 1-7). IEEE.
[68] Shashidhar, R., Kadakol, P., Sreeniketh, D., Patil, P., Krishnappa, K. H., & Madhura, R. (2023, November). EEG data analysis for stress detection using k-nearest neighbor. In 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS) (pp. 1-7). IEEE.
[69] KRISHNAPPA, K. H., & Trivedi, S. K. (2023). Efficient and Accurate Estimation of Pharmacokinetic Maps from DCE-MRI using Extended Tofts Model in Frequency Domain.
[70] Krishnappa, K. H., Shashidhar, R., Shashank, M. P., & Roopa, M. (2023, November). Detecting Parkinson's disease with prediction: A novel SVM approach. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.
[71] Shashidhar, R., Balivada, D., Shalini, D. N., Krishnappa, K. H., & Roopa, M. (2023, November). Music Emotion Recognition using Convolutional Neural Networks for Regional Languages. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.
[72] Madhura, R., Krishnappa, K. H., Manasa, R., & Yashaswini, K. P. (2023, August). Slack Time Analysis for APB Timer Using Genus Synthesis Tool. In International Conference on ICT for Sustainable Development (pp. 207-217). Singapore: Springer Nature Singapore.
[73] Krishnappa, K. H., & Gowda, N. V. N. (2023, August). Dictionary-Based PLS Approach to Pharmacokinetic Mapping in DCE-MRI Using Tofts Model. In International Conference on ICT for Sustainable Development (pp. 219-226). Singapore: Springer Nature Singapore.
[74] Krishnappa, K. H., & Gowda, N. V. N. (2023, August). Dictionary-Based PLS Approach to Pharmacokinetic Mapping in DCE-MRI Using Tofts Model. In International Conference on ICT for Sustainable Development (pp. 219-226). Singapore: Springer Nature Singapore.
[75] Madhura, R., Krutthika Hirebasur Krishnappa. et al., (2023). Slack time analysis for APB timer using Genus’s synthesis tool. 8th Edition ICT4SD International ICT Summit & Awards, Vol.3, 207–217. https://doi.org/10.1007/978-981-99-4932-8_20
[76] Shashidhar, R., Aditya, V., Srihari, S., Subhash, M. H., & Krishnappa, K. H. (2023). Empowering investors: Insights from sentiment analysis, FFT, and regression in Indian stock markets. 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE), 01–06. https://doi.org/10.1109/AIKIIE60097.2023.10390502
[77] Jayakeshav Reddy Bhumireddy, Rajiv Chalasani, Mukund Sai Vikram Tyagadurgam, Venkataswamy Naidu Gangineni, Sriram Pabbineedi, Mitra Penmetsa. Predictive models for early detection of chronic diseases in elderly populations: A machine learning perspective. Int J Comput Artif Intell 2023;4(1):71-79. DOI: 10.33545/27076571.2023.v4.i1a.169